Инструкция по генерации ключа электронной подписи |

Инструкция по генерации ключа электронной подписи | Электронная цифровая подпись

14. Причины ненадежности криптосистем

В настоящее время криптографические методы защиты используются в информационных системах любой степени сложности и назначения. Криптографическими методами защищается государственная тайна, обеспечивается законность электронного документооборота, предотвращаются попытки мошенничества в системах электронной торговли.

Современная криптография предоставляет все необходимые алгоритмы, методы и средства, которые позволяют построить систему защиты, затраты на взлом которой таковы, что у противника с ограниченными финансовыми и техническими возможностями для получения интересующей его информации остаются две только две возможности – использование, во-первых, человеческого фактора, а во-вторых, особенностей конкретной реализации криптоалгоритмов и криптопротоколов, которая чаще всего оставляет желать лучшего.

Именно такой вывод можно сделать, анализируя примеры реальных успешных атак на криптосистемы. Известны лишь единичные случаи взлома с использованием исключительно математических методов. В то же время различных примеров взломов реальных систем так много, что их анализом вынуждены заниматься целые компании, наиболее известная из которых Counterpane Systems Б. Шнайера.

Система защиты в целом не может быть надежнее отдельных ее компонентов. Иными словами, для того чтобы преодолеть систему защиты, достаточно взломать или использовать для взлома самый ненадежный из ее компонентов. Чаще всего причинами ненадежности реальных систем криптографической защиты являются:

Самое ненадежное звено системы – человек. Типичные ошибки пользователей, нарушающих безопасность всей системы защиты:

Получают распространение атаки типа отказ в обслуживании (denial of service), провоцирующие пользователя отключать “заедающую” систему защиты при решении неотложных задач.

Можно выделить следующие причины ненадежности криптосистем, связанные с особенностями их реализации:

В некоторых случаях, особенно в системах реального времени, применение стойких алгоритмов принципиально невозможно в силу их низкого быстродействия, и поэтому вынужденно используются менее стойкие, но быстрые криптоалгоритмы.

Многие качественные криптографические средства подпадают под действие экспортных ограничений, искусственно снижающих качество этих средств. Например, в США запрещен экспорт криптоалгоритмов с длиной ключа более 56 бит.

Все программные средства, произведенные в США и легально экспортируемые за рубеж, обеспечивают ослабленную криптографическую защиту. Аналогичная ситуация имеет место и в Европе. Так, например, существуют две версии алгоритма поточного шифрования А5 (стандарт GSM) – надежная А5/1 и существенно менее стойкая А5/2 для поставок в развивающиеся страны.

Многие разработчики ПО включают в свои продукты собственные криптоалгоритмы, самонадеянно считая себя специалистами, забывая, что современная криптография основана на глубоких исследованиях в таких разделах математики, как высшая алгебра, теория чисел, теория информации, теория сложности вычислений и др.

Основные ошибки при применении криптоалгоритмов: недостаточная длина ключа, некачественная процедура управления ключами, некачественный генератор ПСП или неправильная его инициализация; и наконец, использование криптоалгоритмов не по назначению, например хранение паролей в зашифрованном, а не в хешированном виде и использование на практике модели доверительных отношений, отличной от той, в расчете на которую проектировалась система.

Ошибки в реализации криптоалгоритмов. Эта причина ненадежности криптосистем в силу своей нетривиальности и многообразия требует отдельного рассмотрения, поэтому ограничимся лишь кратким перечислением основных проблем, возникающих при реализации криптоалгоритмов.

Надежная система защиты должна уметь оперативно обнаруживать несанкционированные действия для минимизации возможного ущерба. В случае обнаружения повреждений в системе должны включаться эффективные процедуры восстановления разрушенных элементов. Система не должна потерять живучесть даже в случае проведения успешной атаки на нее.

Причины наличия большинства “дыр” (или люков) в ПО, т.е. не описанных в документации возможностей работы с ним, очевидны: забывчивость разработчиков, которые в процессе отладки продукта создают временные механизмы, облегчающие ее проведение, например, за счет прямого доступа к отлаживаемым частям программы. По окончании отладки часть “дыр” убирается, а о части разработчики благополучно забывают либо оставляют их сознательно, особенно в ранних версиях продукта, когда в будущем весьма вероятна его доработка.

“Дыры” могут являться следствием применения технологии разработки программ “сверху вниз”, когда программист сразу приступает к написанию управляющей программы, заменяя предполагаемые в будущем подпрограммы “заглушками”, имитирующими реальные подпрограммы или просто обозначающими место их будущего подсоединения.

Очень часто эти “заглушки” остаются в конечной версии программы. Либо опять же по причине забывчивости, либо в расчете на будущую модификацию продукта, либо, например, если в процессе разработки выясняется, что какая-то подпрограмма не нужна, а удалить заглушку не представляется возможным.

Третий источник “дыр” – неправильная обработка (или ее отсутствие) каких-либо нестандартных ситуаций, которые могут иметь место при работе программы: неопределенный ввод, ошибки пользователей, сбои и т.п. В этом случае противник может искусственно вызвать в системе появление такой нестандартной ситуации, чтобы выполнить нужные ему действия.

Наконец, известны случаи, когда люк в ПО или аппаратуре – первый шаг к атаке системы безопасности. Разработчик умышленно оставляет его в конечном продукте, чтобы в будущем, например, иметь возможность модифицировать информацию незаметно для законного пользователя, расшифровывать ее, не зная ключа, и т.п.

Существуют программы, изначально предназначенные для разрушительных действий: это компьютерные вирусы, компьютерные черви, троянские программы и пр. С полным на то основанием они получили обобщенное название разрушающих программных воздействий (РПВ).

РПВ могут выполнять одно или несколько из перечисленных действий, опасных для системы защиты:

Еще более разнообразны пути внедрения РПВ. Можно выделить следующие средства, предназначенные для борьбы с РПВ, без которых любая программная реализация криптоалгоритма практически беззащитна:

Аппаратуру легче физически защитить от проникновения извне. Криптомодули могут помещаться в особые контейнеры, которые делают невозможным изменение алгоритма функционирования. Интегральные схемы могут покрываться специальным химическим составом, при этом любая попытка преодоления защитного слоя приводит к самоуничтожению их внутренней логической структуры. Тем не менее известны случаи выявления и аппаратных закладок.

Читайте также:  Электронная цифровая подпись (ЭЦП) документов в 1С за пару кликов с использованием утилиты КРИПТО-ПРО PDF / Хабр

Кроме того, возникает проблема защиты от экзотических атак, применимых к реализациям в смарт-картах, – временного анализа и анализа потребляемой мощности. Эти атаки основаны на использовании того факта, что различные операции, выполняемые на микропроцессоре, требует разного времени, а также приводят к разному потреблению мощности.

Приблизительный анализ уязвимости различных операций с точки зрения временных характеристик дает следующие результаты.

  1. Поиск по таблицам – неуязвим для временных атак.
  2. Фиксированные сдвиги – неуязвимы для временных атак.
  3. Булевы операции – неуязвимы для временных атак.
  4. Сложение/вычитание – трудно защитить от временных атак.
  5. Умножение/деление – наиболее уязвимые для временных атак операции.

Стойкость к атакам такого рода, направленным не на криптоалгоритм, а на его реализацию, также надо учитывать. Защищенность по отношению к временному анализу можно повысить путем введения дополнительных задержек. Более сложной является проблема защиты от анализа мощности, но ее можно решить несколькими путями.

С недавних пор получили распространение атаки на аппаратуру криптосистем, основанные на анализе электромагнитного излучения и других побочных источников информации.

Получают распространение по сути “биологические” методы взлома, рассматривающие криптосистемы как сложные объекты, определенным образом реагирующие на внешние раздражители. Атаки подобного рода основаны на анализе поведения системы после случайных или преднамеренных сбоев в работе.

Несмотря на успехи современной криптографии, задача построения надежной системы криптографической защиты комплексная, она значительно сложнее, чем кажется на первый взгляд. Надежная система защиты может быть построена только с учетом всех перечисленных факторов.

К моменту выхода этого курса в большинстве существующих систем обеспечения безопасности произойдет замена криптоалгоритмов с секретным и открытым ключом на лучшие на сегодняшний день – соответственно AES и ECCS, которые были описаны в данной главе.

Поэтому в последующих главах везде, где будет идти речь об алгоритмах блочного шифрования DES, Triple DES (3DES) и других, следует учитывать скорее всего уже свершившийся переход к AES; везде, где речь идет об алгоритме открытого шифрования RSA, следует учитывать скорее всего уже свершившийся переход к ECCS.

4.3. Классификация методов шифрования информации

Основные объекты изучения классической криптографии показаны на
рис.
3.4, где А и В – законные пользователи, W – противник или криптоаналитик. Учитывая что схема на
рис.
3.

Процедуры зашифрования E (encryption) и расшифрования D (decryption) можно представить в следующем виде:

Функции за- и расшифрования взаимно обратные, иначе говоря, для любого текста X справедливо:

На
рис.
3.5 приведена классификация методов шифрования информации. Различают два типа алгоритмов шифрования симметричные (с секретным ключом) и асимметричные (с открытым ключом). В первом случае обычно ключ расшифрования совпадает с ключом зашифрования, т.е.

либо знание ключа зашифрования позволяет легко вычислить ключ расшифрования. В асимметричных алгоритмах такая возможность отсутствует: для зашифрования и расшифрования используются разные ключи, причем знание одного из них не дает практической возможности определить другой. Поэтому, если получатель А информации сохраняет в секрете ключ расшифрования K_{dA} = SK_AK_{eA} = PK_ASK – secret key, PK – public key).

В процессе шифрования информация делится на порции величиной от одного до сотен бит. Как правило, поточные шифры оперируют с битами открытого и закрытого текстов, реже – с байтами, а блочные – с блоками фиксированной длины. Главное требование к блочному шифру – высокая криптостойкость.

Блочный криптоалгоритм для своей работы требует наличия полного блока данных, в поточных же криптоалгоритмах стараются обеспечить шифрование в режиме рельного времени или близком к нему (иногда с ущербом для криптостойкости). Но главное различие между этими двумя методами заключается в том, что в блочных шифрах для шифрования всех порций используется один и тот же ключ, а в поточных – для каждой порции используется свой ключ той же размерности.

Иначе говоря, в поточных шифрах имеет место зависимость результата шифрования порции информации от ее позиции в тексте, а в некоторых случаях и от результатов шифрования предыдущих порций текста.
Таким образом, при реализации поточной криптосистемы возникает необходимость в элементах памяти, изменяя состояние которых, можно вырабатывать последовательность (поток) ключевой информации. Блочную же криптосистему можно рассматривать как зависящую от ключа замену на множестве значений блоков открытого текста.

Высокая скорость работы поточных шифров определяет область их использования – закрытие данных, требующих оперативной доставки потребителю, например аудио- и видеоинформации. Учитывая, что при применении классических блочных шифров одинаковым блокам открытого текста соответствуют одинаковые блоки шифротекста, что является серьезным недостатком, на практике получили наибольшее распространение комбинированные методы шифрования (а точнее, поточные режимы использования блочных шифров), использующие сцепление блоков или принцип формирования потока ключей (гаммы шифра) с помощью так называемых генераторов псевдослучайных последовательностей (ПСП), в качестве функции обратной связи которых используется функция зашифрования блочного шифра.

Блочные итерационные шифры. Принцип работы всех современных блочных шифров суть многократное повторение одной и той же раундовой операции. В некоторых случаях раундовые ключи получаются из ключа всей системы с помощью алгоритма выработки раундовых ключей (при этом размер ключа системы существенно меньше суммарного размера всех раундовых ключей).

Идея, лежащая в основе итерационных блочных шифров, состоит в построении криптостойкой системы путем многократного применения относительно простых криптографических преобразований, в качестве которых К. Шеннон предложил использовать преобразования замены (подстановки) (substitution) и перестановки (permutation); схемы, реализующие эти преобразования, называются SP-сетями. Действие таких шифров аналогично “алгоритму”, к которому прибегают, когда месят тесто:

Многократное использование этих преобразований, приведенное на
рис.
3.6, позволяет обеспечить два свойства, которые должны быть присущи стойким шифрам: рассеивание (diffusion) и перемешивание (confusion) информации.

Рассеивание и перемешивание предполагают:

Наличие у шифра этих свойств:

Читайте также:  Стоимость ЭЦП — цены на изготовление электронной цифровой подписи

Самые известные блочные шифры – DES (Data Encryption Standard), старый американский стандарт шифрования, созданный в 1974 г., де-факто многолетний неофициальный мировой стандарт шифрования; российский стандарт криптозащиты ГОСТ 28147-89 и новый американский стандарт шифрования AES (Advanced Encryption Standard), принятый в 2001 г. в результате многолетнего открытого международного конкурса.

Структура раундового преобразования DES и ГОСТ носит название петли Фейстеля, схема которой приведена на
рис.
3.7, а структура функций за- и расшифрования – сеть Фейстеля. Структура AES носит название “Квадрат”.

DES работает с блоками данных разрядностью 64 бита с использованием 56-разрядного ключа, из которого по специальному фиксированному алгоритму, использующему перестановки и сдвиги, вырабатываются раундовые ключи. Применяемые преобразования – поразрядное сложение по модулю 2, подстановки и перестановки, число раундов равно 16, перед началом первого раунда выполняется начальная фиксированная перестановка IP, после 16-го раунда выполняется обратная перестановка IP^{–1}

Интересно отметить, что в первоначальной схеме, предложенной IBM, все шестнадцать 48-разрядных раундовых ключей выбирались независимо, т.е. размер ключа был равен 768 битам. Однако по требованию Агентства национальной безопасности США (АНБ), во-первых, размер ключа был уменьшен до 64 бит, из которых только 56 являются секретными, во-вторых, в алгоритме определены перестановки лишь специального вида, не зависящие от ключа, что наводило критиков этого алгоритма на мысль, будто АНБ могла использовать известные ей слабости алгоритма для его взлома.

Существует несколько предложений, направленных на усовершенствование DES. Наиболее известное из них, Triple DES, заключается в трехкратном применении алгоритма.

ГОСТ 28147-89. Ключевая информация ГОСТа представляет собой два массива данных: собственно ключ K и таблицу замен H. Ключ – это массив из восьми 32-разрядных элементов K = K_0 K_1 … K_7

В качестве исходных данных раундовая функция шифрования ГОСТа получает 64-разрядный блок данных D = (L, R) и 32-разрядный раундовый ключ, в качестве которого используется один из элементов ключа Кi. В ходе выполнения преобразования левая L и правая R половины блока данных рассматриваются как отдельные 32-разрядные элементы данных, в качестве которых они подвергаются следующим преобразованиям:

  1. сложение по модулю 2^{32} полублока R и элементом ключа;
  2. разбиение результата S на восемь четырехбитовых блоков, поблочная замена по таблице замен, формирование из получившихся блоков нового значения S;
  3. циклический сдвиг результата S на 11 разрядов влево;
  4. поразрядное сложение по модулю 2 (XOR) результата S и полублока L;
  5. элемент R становится новым значением элемента L, значение результата предыдущей операции становится новым значением элемента R.

Полученные значения элементов L и R выдаются в качестве результата шага раундового преобразования.

ГОСТ 28147-89 определяет три режима шифрования данных (простая замена, гаммирование и гаммирование с обратной связью) и режим выработки имитоприставки (кода аутентификации сообщений).

Инструкция по генерации ключа электронной подписи

Оглавление

1.  Перед началом генерации.

2.  Установка приложения.

3.  Предоставление доступа.

4.  Установка КриптоПРО CSP.

5.  Установка драйвера для токена.

6.  Формирование запроса на сертификат.

7.  Запись сертификата на ключевой носитель.

ОСНОВНЫЕ ПОНЯТИЯ

КСКПЭП  квалифицированный сертификат ключа проверки электронной подписи.
КЭП – квалифицированная электронная подпись.

Криптопровайдер – средство защиты криптографической защиты информации. Программа с помощью которой генерируется закрытая часть электронной подписи и которая позволяет производить работу с электронной подписью. Данная галочка проставляется автоматически.

Экспортируемый ключ – возможность копирования электронной подписи на другой носитель. При отсутствии галочки копирование электронной подписи будет невозможно.

ЛКМ – левая кнопка мыши.

ПКМ – правая кнопка мыши.

CRM-AGENT – приложение, разработанное специалистами УЦ для упрощения процедуры генерации ключевой пары, создания запроса и записи сертификата.

После посещения удостоверяющего центра и прохождения процедуры сверки личности, на указанную Вами в заявлении электронную почту, УЦ прислал письмо, содержащее ссылку для генерации. Если Вы не получали письма, обратитесь к Вашему менеджеру или в Техническую поддержку УЦ по контактному номеру из этого руководства.

Откройте ссылку для генерации из письма в одном из рекомендуемых браузеров: Google ChromeMozilla FirefoxYandex.Браузер. Если Вы уже находитесь в одном из вышеперечисленных браузеров, кликните по ссылке ЛКМ или ПКМ > «Открыть ссылку в новой вкладке». Страница генерации (Рис.1) откроется в новом окне.

При открытии ссылки, появится первоначальное предупреждение. Ознакомьтесь с ним, если для хранения КЭП вы используете носитель Jacarta LT. Подробнее о носителях в Таблице 1 ниже. Если используете иной носитель, то нажмите кнопку «Закрыть».

Рис.1 – Страница генерации

1

Нажмите на ссылку «Скачать приложение» для начала загрузки. Если ничего не произошло после нажатия, кликните по ссылке ПКМ > «Открыть ссылку в новой вкладке». После скачивания приложения запустите установку.

Рекомендуется отключить антивирусное ПО перед загрузкой программы!

В процессе установки приложения «crmagent» появится сообщение с запросом доступа (Рис.2).

Рис.2 – Запрос доступа

2

Нажмите кнопку «Да».

После окончания установки приложения вернитесь на страницу с генерацией. Появится сообщение о «Предоставлении доступа» (Рис.3).

Рис.3 – Доступ к хранилищу сертификатов

54

Нажмите «Продолжить» и, в появившемся окне, «Предоставить доступ» (Рис.4).

Рис.4 – Доступ к хранилищу сертификатов 2

5

Если не появилась кнопка «Продолжить»

Если после установки приложения «crmagent», ссылка на скачивание приложения не исчезла, причиной может быть блокировка подключения вашей системой безопасности.

Для устранения ситуации необходимо:

Отключить антивирус, установленный на вашем компьютере;

Открыть новую вкладку в браузере;

Ввести в адресную строку браузера адрес без пробелов – 127.0.0.1:90 – и перейти (нажать Enter на клавиатуре);

При появлении сообщения браузера «Ваше подключение не защищено», добавьте страницу в исключения браузера. Например, Chrome«Дополнительные» – «Все равно перейти на сайт». Для остальных браузеров воспользуйтесь соответствующей инструкцией разработчика.

Читайте также:  Как пользоваться КриптоПро бесплатно в 2019 году: установка и настройка

После появления сообщения об ошибке, вернитесь на страницу с генерацией и повторите Пункт 2 данной инструкции.

В случае, если у вас отсутствуют предустановленные криптопровайдеры, после этапа предоставления доступа появятся ссылки для скачивания КриптоПРО (Рис.5).

Рис.5 – Загрузка КриптоПРО

6

Это важно: приложение «crmagent» обнаруживает любые криптопровайдеры на компьютере, и, если у Вас установлена отличная от КриптоПРО CSP программа (например, VipNET CSP), свяжитесь со специалистами технической поддержки УЦ для консультации.

Нажмите на ссылку «КриптоПРО 4.0» на странице генерации или на аналогичную ссылку ниже для загрузки файла установки КриптоПРО на компьютер.

КриптоПро CSP 4.0 – версия для ОС Win 7 / 8 / 10

После окончания загрузки откройте zip-архив с помощью соответствующей программы-архиватора (например, WinRAR). Внутри будет сам файл установки КриптоПРО. Запустите его и установите с параметрами по умолчанию. В процессе установки у Вас может появиться следующее окно:

Рис.5 – Установка КриптоПРО

7

Пропустите окно, нажав «Далее». Установка КриптоПРО завершена.

Подписи можно хранить в реестре компьютера, на обычных флеш-накопителях и на специальных usb-токенах. Список токенов, пин-коды и ссылки на ПО представлены в таблице ниже (Таблица 1).

Таблица 1 – Драйверы для защищенных носителей

Визуально определите ваш носитель.

Для работы с одним из этих носителей необходимо установить драйвер. Перейдите по соответствующей ссылке, скачайте драйвер и установите его на компьютер. Установку драйвера проводите с параметрами по умолчанию.

Теперь Вы можете приступать к формированию запроса на сертификат. На экране у вас появится сообщение об этом (Рис.6). Нажмите кнопку «Продолжить» для начала формирования запроса.

Рис.6 – Начало формирования запроса

8

Откроется дополнительное окно с предложением выбрать, куда записать КЭП (Рис.7). Есть возможность выбрать в качестве носителя:

Реестр – хранилище «внутри» компьютера;

Диск {X} – обычный флэш-накопитель;

ARDS JaCarta 0Activ Co Rutoken 0 и т.п. – защищенный токен.

Рис.7 – Выбор носителя

15

Передвигая ползунок, выберите носитель для хранения КЭП и нажмите «ОК». Если был выбран «Реестр», то система в дальнейшем предупредит о возможном риске. Продолжите, если Вы осознанно выбрали реестр в качестве носителя для КЭП. Если случайно, то повторите формирование запроса повторно.

Это важно: в качестве хранилища КЭП для электронных торговых площадок можно использовать только защищенный носитель — токен. Если нет токена или драйвер установлен, но сам токен не работает, то свяжитесь со специалистами технической поддержки УЦ для консультации.

После выбора носителя откроется окно генерации «Датчик случайных чисел» (Рис.8). Для заполнения шкалы необходимо быстро и часто нажимать на цифровые клавиши на клавиатуре или передвигать мышь в пределах окна. Может потребоваться повторить процедуру несколько раз.

Рис.8 – Датчик случайных чисел

16

По окончанию процесса откроется окно с предложением задать пароль (Рис.8) для контейнера, если был выбран обычный флеш-накопитель или реестр. Рекомендуется не задавать пароль и пропускать данный пункт нажатием кнопки «ОК» без ввода и подтверждения пароля.

Рис.8 – Ввод пароля

17

Если вы выбрали в качестве носителя токен, тогда необходимо ввести pin-код. Стандартные pin-коды носителей указаны в Таблице 1 выше. Выбрать токен для хранения и пройти датчик случайных чисел может потребоваться дважды, так как на данный момент выпускается две аналогичные КЭП: по старому ГОСТ 2001 и по новому ГОСТ 2021.

Это важно: количество попыток ввода pin ограничено и, если pin введен неверно несколько раз, то носитель может быть заблокирован. В таком случае, свяжитесь со специалистами технической поддержки УЦ для консультации.

При успешном завершении генерации появится следующее (Рис.9) сообщение:

Рис.9 – Завершение генерации

18

Завершена процедура по созданию закрытой части ключа электронной подписи и отправка запроса на сертификат. Если в качестве носителя у Вас флеш-накопитель (флешка), то доступ к файлам электронной подписи открыт пользователям и антивирусному ПО. В таком случае есть риск утери закрытой части, после чего потребуется перевыпуск. Чтобы обезопасить себя от нежелательных последствий хранения КЭП на флеш-накопителе, сохраните копию папки с флеш-накопителя на своём компьютере и заархивируйте скопированный образец.

Это важно: категорически не рекомендуется осуществлять действия с этими файлами: перенос, изменение наименования, редактирование. При утере электронной подписи, требуется платный перевыпуск КЭП. Создавать копию созданной в процессе генерации папки – безопасно.

Спустя 5 минут после завершения этапа генерации, обновите страницу генерации, нажав клавишу F5 или соответствующую кнопку в браузере. Если запрос на выпуск сертификата уже одобрили, появится страница для записи сертификата в контейнер ключа (Рис.10). По ссылке из пункта 1 «Скачайте бланк для подписи» на этой странице скачайте бланк сертификата, распечатайте его. Владелец сертификата, на чье имя была выпущена КЭП, должен подписать бланк.

Рис.10 – Сертификат одобрен

19

Подписанный документ необходимо отсканировать и загрузить скан на сервер нашего удостоверяющего центра с помощью кнопки на этой же странице. После этого станут доступны две ссылки (Рис.11).

Рис.11 – Бланк загружен

20

Кликните на ссылку «Записать сертификат на ключевой носитель», откроется дополнительное окно (Рис.12).

Рис.12 – Запись сертификата

21

Нажмите кнопку «Продолжить» – в появившемся окошке «Предоставить доступ». Для завершения записи кликните кнопку «Начать». Появится сообщение об успехе операции (Рис. 13).

Рис.12 – Завершение записи сертфиката

22

Все готово, электронная подпись успешно создана. Для проверки работоспособности КЭП, откройте письмо, которое придёт после создания КЭП. В письме будет содержаться ссылка на сервис по подписанию закрывающих документов с помощью электронной подписи. Пройдите процедуру подписания и скачайте подписанные документы.

Скачать инструкцию

Оцените статью
ЭЦП Эксперт
Добавить комментарий